

Karplus Relationships

FIGURE 3.57 The vicinal Karplus correlation. Relationship between dihedral angle (ϕ) and coupling constant for vicinal protons.

FIGURE 3.58 The geminal Karplus correlation. $J_{\rm HH}$ for CH₂ groups as a function of >H—C—H. Note the zero coupling at about 125°.

Silverstein, R., et. al. (2005). "Spectrometric Identification of Organic Compounds," 7th Ed. New York: Wiley.

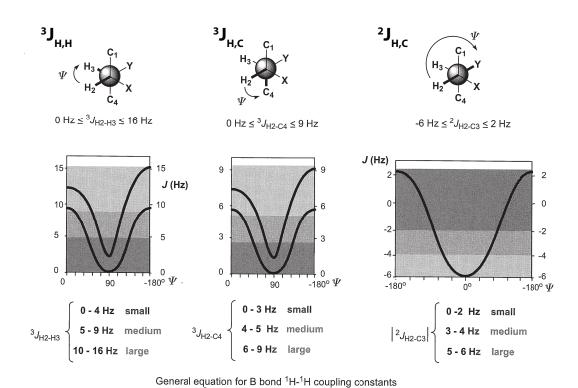


FIGURE **4.7** Relationship between coupling constants $(^3J, ^2J)$ and dihedral angle ψ . Upper curves represent original Karplus equation, lower curves are the Altona equation for heteroatom-substituted carbon chains.

 $^{3}J_{HH} = A + B (\cos \Psi) + C(\cos 2\Psi).$

Crews, P., et. al. (2010). "Organic Structure Analysis," 2nd Ed. New York: Oxford.

Compound	J(Hz)
sp^3	
CH_4	125.0
CH ₃ CH ₃	124.9
CH_3 $\underline{C}H_2$ CH_3	119.2
(CH ₃) ₃ CH	114.2
(CH3)3CH	114.2
/ \ , , , ,	122.0
—Н	123.0
Н	128.0
	128.0
PhCH ₃	129.0
CH_3NH_2	133.0
	134.0
H	140.0
ROCH ₃	140.0
CH_3OH	141.0
CH ₃ Cl	150.0
$\mathrm{CH_{3}Br}$	151.0
— Н	161.0
$(CH_3O)_2C\underline{H}_2$	162.0
CH ₂ Cl ₂	178.0
0	
—Н	180.0
H	
	205.0
CHCl ₃	209.0
sp^2	
CH_3 C H = $C(CH_3)_2$	148.4
$CH_2 = CH_2$	156.2
C_6H_6	159.0
^	
H	160.0
C=C=C-H	168.0
	170.0
Н	
CH₃ C H≡O	172.4
N	
<u>«</u> >н	178.0
$NH_2CH=O$	188.3
=COH(OR)	195.0
CH₃ <u>C</u> HX, X=halogen	198.0
—Н	238.0
sp	
CH≡CH	249.0
$C_6H_5C \equiv CH$	251.0
HC≡N	269.0

TABLE 4.2 Some ${}^2J_{\rm CH}$ Values

Compound	J(Hz)	
sp^3		
C <u>H</u> ₃ CH ₃	-4.5	
$C\underline{H}_3\underline{C}Cl_3$	5.9	
$R\underline{C}(=O)C\underline{H}_3$	6.0	
$\underline{C}H_3C\underline{H} = O$	26.7	
sp^2		
$*C_6H_6$	1.0	
$C\underline{H}_2 = \underline{C}H_2$	2.4	
$C = C(\underline{C}H_3)\underline{H}$	5.0	
$(C\underline{H}_3)_2\underline{C} = O$	5.5	
$CH_2 = \underline{C}HC\underline{H} = O$	26.9	
sp		
C <u>H</u> ≡ <u>C</u> H	49.3	
$C_6H_5O\underline{C} = C\underline{H}$	61.0	

Proton-Fluorine	
C F_b	44-81
$\begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \\ \\ \end{array} \\ \\ \end{array} \\ \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \\ \end{array} \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \\$	3-25 0-4
$C = C$ F_b	1-8
$C = C$ F_b	12-40
H_a	o 6-10 m 5-6 p 2
αH_3C — C — $CH_2F \gamma$	αγ 4.3 βγ 48

Proton-Phosphorus

O PH	630-707
$(CH_3)_3P$	2.7
$(CH_3)_3P=0$	13.4
$(CH_3CH_2)_3P$	0.5 (HCCP) 13.7 (HCP)
$(CH_3CH_2)_3P=0$	11.9 (HCCP) 16.3 (HCP)
O CH ₃ P (OR) ₂	10-13
$CH_3CP(OR)_2$	15-20
$CH_3OP (OR)_2$	10.5-12
$P[N(CH_3)_2]_3$	8.8
$O=P[N(CH_3)_2]_3$	9.5

TABLE 4.3 Coupling Constants for ¹⁹F, ³¹P, D Coupled to ¹³C

Compound	$^{1}J(\mathrm{Hz})$	$^2J(Hz)$	$^3J(Hz)$	⁴ <i>J</i> (Hz)
CH ₃ CF ₃	271			
CF ₂ H ₂	235			
CF ₃ CO ₂ H	284	43.7		
C ₆ H ₅ F	245	21.0	7.7	3.3
$(C_4H_9)_3P$	10.9	11.7	12.5	
$(CH_3CH_2)_4P^+Br^-$	49.0	4.3		
$(C_6H_5)_3P^+CH_3I^-$	88.0	10.9		
	$^{1}J(Hz)$ of $CH_{3} = 52$			
$C_2H_5(P=O)(OC_2H_5)_2$	143	$7.1 (J_{\text{COP}})$	$6.9 (J_{\text{CCOP}})$	
$(C_6H_5)_3P$	12.4	19.6	6.7	
CDCl ₃	31.5			
$CD_3(C=O)CD_3$	19.5			
$(CD_3)_2SO$	22.0			
C_6D_6	25.5			